
J .  Fluid Mmh. (1980). UO~.  97, p H  4, pp .  841-653 

Phnted in Great Britain 
64 1 

The influence of vortex shedding on the diffraction of 
sound by a perforated screen 

By M. S. HOWE 
Bolt Beranek and Newman, Inc., 50 Moulton Street, Cambridge, MA 02138, USA 
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This paper examines the theory of the interaction of sound with a slit-perforated 
screen in the presence of a uniform, subsonic tangential mean flow on both sides of the 
screen. The sound induces vortex shedding from sharp edges of the screen. The 
coupling of this vorticity with the mean flow leads to a significant modification in the 
predicted acoustic properties as compared with those predicted by the classical treat- 
ments of Rayleigh (1897) and Lamb (1932). In particular a considerable portion of the 
incident acoustic energy can be lost during the interaction, and is convected away in 
the mean flow in the form of localized vortical disturbances. The analytical results 
provide theoretical support for the use of perforated plates to inhibit the onset of 
cavity resonances in, for example, cross-flow heat exchangers. 

1. Introduction 
Lamb (1932, 3 306) has discussed the diffraction of a plane sound wave by a thin 

screen which is perforated by a series of parallel, equal, and equidistant slits. The case 
of a screen perforated with small circular apertures was examined by Ffowcs Williams 
(19721, and in more detail for the general elIiptic aperture by Leppington & Levine 
(1973). The effect of a low-Mach-number ‘bias ’ flow (i.e., of a mean normal flow through 
the screen) has been considered for a screen with circular apertures by Howe ( 1 9 7 9 ~ ) .  
In  this case there exists a mean jet-like flow in the wake of each aperture whose 
structure is modulated by the incident sound through the unsteady shedding of 
vorticity from the rim of the aperture. In this paper we examine the diffraction of 
sound when the screen is located in a uniform tangential mean flow. In contrast to the 
bias flow problem, any shed vorticity remains in the vicinity of the screen, so that in the 
absence of viscous dissipation, its influence on the unsteady motion in the apertures 
can persist indefinitely. 

The analysis will proceed from the linearized equations of motion and will deal with 
the slit-perforated screen studied by Lamb, the tangential flow being at right angles 
to the slits. A purely acoustic (irrotational) treatment of this problem would involve 
the appearance of infinite velocity and pressure fluctuations a t  the edges of the slits. 
The singular behaviour can be removed a t  the upstream edges A (see figure 1) by 
applying the Kutta condition, and this leads to the shedding of vorticity which is 
swept along the screen by the mean flow. On linear theory, vorticity which is shed from 
the leading edges of the rigid portions of the screen is immediately annulled by image 
vortices in the screen. This precludes an application of the Kutta condition at  such 
points where, as in thin airfoil theory (cf. Ashley & Landahl 1965, §13.2), large 
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FIGURE 1 .  Schematic illustration of the perforated screen. A plane acoustic wave impinges on the 
screen from z2 > 0 and induces the shedding of vorticity from the upstream edges A of the 
slits. 

fluctuations in pressure and velocity can develop. The unsteady vorticity gives rise 
to a time dependent potential difference across the screen, which influences the volume 
flux and causes acoustic energy to be dissipated. The magnitude of this potential 
difference is governed by interactions of the vorticity with the edges of the slits, and is 
accordingly dependent on the Strouhal number based on the slit width and the vorticity 
convection velocity. For certain discrete frequencies these interactions produce no net 
potential difference, and the diffraction of sound is then essentially unaffected by the 
mean flow. 

The dissipation of acoustic energy by a perforated plate in a tangential flow has 
important applications, for example, to the problem of controlling acoustic resonances 
in heat exchangers in gas-cooled nuclear reactors. Vortex shedding from tube-banks 
in the heat exchanger cavity generates aerodynamic sound (Lighthill 1953; Walker & 
Reising 1968) which can be resonantly coupled to the vibrations of tubes, plates and 
other structural members. The resulting oscillating stresses (which might well corre- 
spond to sound pressure levels of 150 dB, re 0.002 pbar, or more) can lead to metal 
fatigue and structural failure. Various devices have been proposed for suppressing 
these resonances, including the use of baffles and the complete removal of several 
judiciously placed tubes to inhibit ‘in-phase ’ oscillations. VBr (1979, private com- 
munication), however, has recently demonstrated that the insertion of one or more 
perforated plates parallel to the mean flow is a particularly effective means of 
eliminating the resonances. 

The diffraction problem is formulated in terms of an integral equation in 3 2 of this 
paper. In 5 3 it  is assumed that the spacing of the slits is small compared with the 
relevant Lorentz contracted acoustic wavelength, but large compared with the width 
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of each slit. This permits the derivation of an analytic solution, and is also the appro- 
priate limit for applications. The dissipation of acoustic energy is discussed in $4,  
where comparison is made with Lamb’s (1932) solution, and with nonlinear dissipative 
mechanisms in the slit (Ingard & Ising 1967). 

2. Formulation of the diffraction problem 
Consider the problem illustrated schematically in figure 1,  in which a plane sound 

wave of angular frequency w > 0 propagates in an ideal fluid. The wave is incident on 
a thin, rigid screen which occupies the plane x2 = 0 of a rectangular co-ordinate system 
(x l ,  x2, x3) and is perforated with an array of parallel, equal, and equidistant slits. Let 
2s denote the slit width, and let d be the distance between the centre-lines of adjacent 
slits. The origin of co-ordinates is taken in the centre of one of the slits with the x3 axis 
parallel to the slits and directed out of the paper in figure 1.  

There is a uniform mean flow at speed U parallel to the positive direction of the x1 
axis, so that if @ e-iwt denotes the potential of time-harmonic acoustic perturbations, 
@ satisfies the convected form of the wave equation: 

where k = w / c ,  c is the speed of sound, and M = U / c  is the Mach number of the mean 
flow. We confine attention to the subsonic case M < 1.  

Let cD,e-iwt represent the potential of the incident wave which is assumed to 
impinge on the screen from x2 > 0. It is required to determine the reflected and trans- 
mitted fields when account is taken of the possibility of vortex shedding from the 
upstream edges A of the slits. The strength of the shed vorticity will be chosen in 
accordance with the Kutta condition that the fluctuating pressure and velocity are 
finite at  A .  In  the absence of viscous diffusion, the vorticity will occupy a thin sheet in 
the plane x2 = 0 of the screen. The presence of this unsteady vortex sheet implies that 
the potential @ is discontinuous across x2 = 0 in each of the slits. The perturbation 
pressure p e-iwt, say, must be continuous across the slits, however, and it follows from 
Bernoulli’s equation 

p = - p ,  - i w + u -  @, ( ax1 a )  

where po is the mean density, that the discontinuity in 0 can be represented in the form 

where a is a constant for each slit, and K = w / U  is the hydrodynamic wavenumber. 
Equation (2.3) is equivalent to the result that, on linear theory, shed vorticity convects 
passively at  the mean stream velocity U .  The interpretation of formulae derived 
below is facilitated by the introduction of a subscript c to characterize the motion of 
the vorticity, i.e., we take the vorticity convection velocity to be U,. This enables the 
influence of the vorticity to be followed through the analysis, and to be distinguished 
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from other effects of the mean flow. In  this case the hydrodynamic wavenumber is 
defined by 

K = W / U , .  (2.4) 

The constant a in (2.3) is fixed by the Kutta condition. The remaining conditions 
t.0 be satisfied are that aO/ax2 = 0 on the rigid portions of the screen and, since the 
mean flow is the same on both sides of the screen, is continuous across each of the slits. 

If the Prandtl-Glauert transformations 

Q, = $e-ikMzl/( l -Mq 3 (2-5) 

and 

are introduced into equation (2.1 ), the potential $ is found to satisfy the homogeneous 
Helmholtz equation 

in X ,  2 0,  where a@/aX2 = 0 on the rigid portions of the screen and is continuous 
elsewhere. The jump condition (2.3) becomes 

where 
(2.9) 

(2.10) 

Let the incident plane wave Q I  have the Prandtl-Glauert representation 

$I = ei(nixi-naxa+%xs) (n2 > 0). (2.11) 

Conditions are homogeneous with respect to S, so that all components of the acoustic 
field will be proportional to ein3X3, and we may temporarily suppress the explicit 
dependence on this factor. Thus, writing 

r = ( ~ - n ; p ,  (2.12) 

the branch-cuts being chosen such that I? + K as Ih'l + 03, equation (2.8) becomes 

(2.13) 

where the second term on the right is the field that would be reflected from the screen 
in the absence of perforations, and $s is the contribution from the interaction with 
the slits. Note that B$-,/aX, vanishes on the screen. 

The boundary-value problem for q$ may be reduced to an integral equation for 
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which is non-zero only in the slits (cf. Leppington & Levine 1973). To do this we make 
use of the Green’s function 

G ( r ,  r ’ )  = - 4; { H p ( r  Ir - r’l) + H p ( r  It - r’l)) ,  (2.16) 

defined in terms of the Hankel function @jl)(z), where 

r = (Xl,X2); t = (Il, -X,); r’ = (Y,,Y,). (2.17) 

Application of Green’s formula to $$(r’) and G ( r ,  r ’ )  then shows that in X, > 0, 

m 

$Ar) = x 1 G(X1 ,  x,; Yl’ 0) v(Yl)dY,, (2.18) 

the integration being over all of the slits, 8, denoting the slit whose centre-line is at 
X, = N d ,  where d = d / (  1 - M2)3. Similarly in X, < 0 the potential $(r )  is given by 

N = - m  SN 

m 

$ ( r )  = - c 1 G(&, x,; Yl, 0) V(Y1) dY1. (2.19) 

The periodicity of the incident wave and of the spacing of the slits suggests that 

N=-00 SN 

we seek a solution which satisfies 

$&X, + N d ,  X,) = $s(Xl, Xz) einl Nz, 

in which case (2.14), (2.18) imply that in X, > 0: 

$(X,, X,)  = ei(ni X l - n z  X Z )  + Xl+na X z )  

(2.20) 

00 

Y(Xl, X , ;  Y,) = G ( X , ,  X , ;  Y, + N d ,  0) einl Nd ,  (2.22) 
N = - 0 0  

and S = s/(l -A?,)). Likewise we have in X ,  < 0, from (2.19), 

3 
%wl’ XZ) = - s - ?v,, x,; Yl) V(Yd dY1. (2.23) 

The substitution of (2.21), (2.23) into the jump condition (2.9) across the slit 8, which 

- 5  

contains the origin yields the following equation for V ( X , ) :  

9(Xl,0; Y,) V(Yl)dY, = aei(n+KM)xl (IXll < S ) .  (2.24) 

The value of the constant a in this equation is to be calculated from the condition that 

V ( X , )  = exp [ i k M z , / (  1 - M2)4] a@/ax, 

must remain finite as X, --f -3, i.e., a t  the upstream edge A of So. When V ( X , )  has 
been determined from (2.24)’ the acoustic fields in X ,  >< 0 will be given respectively by 
(2.21), (2.23). 
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3. The diffracted field at low Helmholtz number 

kernel function of the integral. To do this we introduce the hypothesis 
In  order to solve equation (2.24) in analytic form it is necessary to simplify the 

2rs % rZ .g 1. (3.1) 

This is equivalent to requiring that 

kd 4 1, 
1-M2 

where kd = wd/c is the Helmholtz number. The analysis is accordingly restricted in 
validity to wavelengths which are large compared with the spacing of the slits, and to 
relatively low subsonic mean flow Mach numbers. Both of these conditions are relevant 
in applications, and permit the summation in (2.22) to be evaluated asymptotically for 
small I'Z (c.f., the analogous problem treated by Leppington & Levine 1973). 

Using results tabulated by Gradshteyn & Ryzhik (1965, p. 976) we find that 

where the terms not shown explicitly vanish as I'2 + 0. When this and the dimension- 
less variables 

6 = XJZ, ,u = Y,/a (3.4) 

are introduced into equation (2.24) we obtain: 

where 

1 
Q = \ - 1  V ( 6 ) d t  (the 

7T 

The solution of the singular integral equation (3.5) which possesses a t  most integrable 
singularities at the end-points 6 = f 1 is 

(Carrier, Krook & Pearson 1966, p. 428), the first integral on the right-hand side being 
a principal value. Substituting for g(p)  from (3.6), and making use of the generating 
function for Bessel functions J, (Abramowitz & Stegun 1964, p. 361) we find: 

m 

n = l  
-2(l-E2)* x insinn8Jn(Ks) 
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where 

9 = cos-16. (3.9) 

This formal expression for V ( ( )  involves the unknown parameters a, Q .  The Kutta 
condition requires that V(6)  remains finite as ( -+ - 1, and thence that the term in the 
curly brackets of (3.8) vanishes as 6 +- - 1, which gives 

- 2( 1 + CSQ) 
{ ~ K S  In 2 (JO(m) - iJ1(m))  - J,(Ks)} ' 

Substituting this result into equation (3.8) and integrating 
( -  1 , l )  then yields, from (3.6)) 

a =  (3.10) 

with respect to  6 over 

(3.11) 

This completes the formal analysis. Equations (3.8), (3.10), (3.11) determine the 
acoustic field in X, 2 0 by means of equations (2.21), (2.23). 

When the condition (3.1) is fulfilled the reflected and transmitted fields reduce to 
specularly reflected and transmitted waves at  large distances from the screen. These 
are determined from (2.21), (2.23) by making use of the integral representation of the 
Hankel function 

(3.12) 
and the identity 

(3.13) 

(Lighthill 1958, 3 5.4). When X, -+ +a it follows from (2.21) that 

$ = e i h  X I - %  Xz) + Rei(n1 Xi+% X z )  + ... , (3.14) 

where the terms omitted are exponentially small when the Helmholtz number is 
small, and the reflexion coefficient R is given by 

R = 1 -iQs/n2d. (3.15) 

Similarly, the transmitted field reduces to the plane wave T ei(niXi-nSX8) a t  large 
distances, where the transmission coefficient 

T = iQs/n,d. (3.16) 

These expressions for the reflexion and transmission coefficients reduce to those 
given by Lamb (1932, 8 306) in the corresponding limit of low Helmholtz number, 
provided that the terms involving Bessel functions - which characterize vortex 
shedding-are discarded, and d is set equal to  d (no mean flow). 

4. Discussion and conclusion 
I n  order to interpret these analytical results they must be expressed in terms of the 

original co-ordinate system (rl, x2, x3), and the precise form of the incident wave @ I  

must be specified. It is convenient to characterize the direction of propagation of this 
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wave in terms of the normal to the wave front, although this does not, of course, 
coincide with the direction of acoustic energy propagation in the moving medium. 

Let the wave normal be determined by the polar direction (0, q5), (0 < 0 < in, 
0 < q5 < 2n), where 0 is the angle of incidence measured from the positive x2 
direction normal to the screen (see figure 1) ,  and q5 is the azimuthal angle measured 
from the positive direction of the x1 axis. The incident wave (Dz, which is a solution of 
the convected wave equation (2.1), may then be taken as 

(q sin 0 cos q5 - z2 cos 0 + x8 sin0 sin q5) . (4.1) 1 ik 
(Dr = exp [ ( l+Msino  cos+) 

The angular frequency w is measured in a frame which is fixed relative to the screen, and 
the factor ( 1  + M sin 0 cos 4) in (4.1) accounts for the Doppler shift in the wavelength 
produced by the mean flow. Reference to equations (3.1 1 )  and (3.15), (3.16) reveals that 
only the component n2 of the wavenumber n defining the Prandtl-Glauert potential 
9 is involved in the specification of the interaction of the sound with the screen, and 
we have from (2.6), (4.1) 

(4.2) 
k COB 0 

- 1 +Msin0 cosq5' 
n -  

The open-area ratio of the screen is given by 

u = 2 s p .  (4.3) 

Define real valued functions y(g, M, KS) ,  6(g, M, KS) of g, the mean flow Mach number 
M ,  and the reduced frequency KS = ws/Uc, by means of 

2Mc cos 6Jo(Ks)2 " = nr( 1 - M2)* (1 + M sin 0 cos q5) [J0(m)2 + J1(~s)2]' 
(4.4) 

- 2Mc cos 0 
6 =  

ng( 1 - M 2 ) t  (1  + M sin 0 cos q5) 

The reflexion and transmission coefficients defined respectively by (3.15), (3.16) may 
now be expressed in the form: 

T =  1 - R =  1 / { 1 + ~ + i 8 } .  (4.6) 

These may be used to determine the acoustic energy transmitted and reflected by 
the screen. To do this recall that the mean acoustic power flux in the i direction is 
equal to (pvi h), where vi is the total velocity in the i direction, p,  h are respectively the 
density and total enthalpy, and the angle brackets denote an average over a wave 
period (Landau & Lifshitz 1959, $8 6 and 64). In  the present case h = Re{iwOee-iut}, 
so that if IT, is the acoustic power incident on the screen, and H8 is the total reflected 
and transmitted acoustic powers, it follows that, with due account taken of convection 
by the mean flow, 

n,/nz = lR12+ IT12 
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Since y > 0, it is apparent that II, ,< II,, i.e., that acoustic energy is dissipated during 
the interaction with the screen. Note that y-+O as the vorticity convection Mach 
number M,-+ 0, and acoustic energy cannot therefore be dissipated when the shed 
vorticity is not carried away by the mean flow. Also, if the Kutta condition had not 
been applied, so that @ is continuous through the slits, with the constant a of (2.3) 
identically zero, but M # 0, all of the terms involving the BesseI functions would be 
absent from our final expressions, and acoustic energy would be conserved. The energy 
which is lost a t  the screen reappears as the essentially incompressible, hydrodynamic 
energy of the shed vorticity. Howe ( 1  979 b,  c) has shown that the rate of dissipation is 
equal to the rate of working of the Reynolds stresses in the rate of strain field of the 
sound. 

I n  considering the implications of these conclusions it must be recognized that 
implicit in the vortex-sheet-wake model is the assumption that the Reynolds number 
based on the slit scale 2s is large. Also, in practice the mean flow will be separated from 
the screen by boundary layers whose widths are generally large compared with 2s. It 
may therefore be conjectured that the vorticity convection velocity U, should be 
assigned a value which is somewhat smaller than that of the free stream. The case in 
which the mean boundary-layer flow is turbulent is of particular importance. The 
magnitude of the vorticity convection velocity is likely to be related to the mean velo- 
city in the viscous region close to the wall, which is ultimately responsible for the 
generation of the shed vorticity, and it is probable that we shall not be substantially 
in error if U, is identified with the mean velocity at the outer edge of the viscous 
sublayer. This implies that 

v, 2: 5v, 1: 0.2u, (4.8) 

where v* 2: 0.0417 is the friction velocity (Hinze 1975, p. 615); in the following discus- 
sion we shall tentatively assume that M, = 0.2M. It might be argued that, since the 
validity of the diffraction analysis implicitly requires the slit width 2s to  be large com- 
pared with the plate thickness, it would be more reasonable to take the convection 
velocity to be equal to the mean velocity at the inner edge of the fully-turbulent 
region of the boundary-layer flow, i.e., U, E 0.6U. This would certainly be appro- 
priate for flow over a blunt trailing edge, where the centre-line velocity accelerates 
from zero to about O.6Uin a distance of the order of the trailing-edge thickness. For a 
screen of small open-area ratio, however, it seems unlikely that a significant accelera- 
tion of the mean flow is possible in the slits. Because of this ambiguity in the precise 
value of M, it  is advisable, where possible, to normalize numerical results with respect 
to the vorticity convection velocity rather than that of the free stream. Actually, it 
often happens that the mean flow Mach number is sufficiently small that it may be 
neglected in expressions (4.41, (4.5) for y ,  6; the vorticity convection Mach number is 
then the only component of the mean flow which need be retained in the formula for 
the dissipation. In  this case M, may be interpreted either as the uniform convection 
velocity in the idealized problem, or as the vorticity convection velocity in the real 
problem. 

Let us consider first the case in which there is no mean flow ( M  = 0). The condition 
(3.1) requires the Helmholtz number of the sound to be small, and table 1 gives the 
variations of IT\, 1 RI for 0 < kd < 0.5 in the case of normal incidence (0 = 0) and a 5 % 
open area ratio ( B  = 0.05). 
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kd IT1 PI 
0 1 .o 0 
0.1 0.9967 0.0807 
0.8 0.987 1 0.1599 
0.3 0.9717 0.2361 
0.4 0.9513 0.3082 
0.5 0.9269 0.3753 

TABLE 1 

1 I 1 I I 

0.8 - 

0.6 - 

0.4 - 

/ /  

0.2 - - 

0 0. I 0.2 0.3 0.4 0.5 
M 

0 0.02 0.04 0.06 0.08 0.1 
MC 

FIGURE 2. Variation of IRI, /TI (0 < kd < 0-5) with the mean Mach number M and the vorticity 
convection Mach number Mc when it is assumed that M,  E 0.2111. The curves illustrate the case 
of normal incidence (0 = 0") and an open area ratio of 5 yo. 

Acoustic energy is conserved, with the corresponding entries of table 1 satisfying 
IT/?-+ IRI2 = 1.  For kd < 0.5, more than 85 yo of the incident sound power is trans- 
mitted through the screen- an observation due originally to Rayleigh (1897). When 
there exists a subsonic grazing flow ( M  # 0 ) ,  but in the absence of vortex shedding, the 
results of table 1 continue to be valid provided that the first column is taken to 
represent kd/( 1 - Mz)B; as before, acoustic energy is conserved. 

The dependence of 1 T 1, I RI on the Helmholtz number kd when vortex shedding is 
taken into account is given by equations (4.4)-(4.6). For an open area ratio of 5 yo and 
a t  normal incidence (8 = 0 ) ,  these equations show that (TI is essentially independent 
of kd when the eddy convection Mach number JZc exceeds 0.01 and IRI is independent 
of kd for M, 2 0.02 (corresponding respectively to  JZ 2 0-05, 0.1, if the relation (4.8) 
is assumed to  hold). The variations of IT(, I RI witrh M ,  M, over this range of reduced 
frequencies are illustrated in figure 2. Acoustic energy is dissipated a t  the screen 
( JRI2+ IT1?- < l ) ,  and the vortex shedding is seen to modify considerably the fraction 
of the acoustic energy transmitted by t,he screen. For example, a t  JI = 0.35 ( M ,  = 0.07) 
less than about 25% of the incident acoustic energy is transmitted, and 50% is 
absorbed by the vorticity. 

The upper limit kd = 0.5, say, of the anticipated range of validity of the present 
theory, imposes a corresponding upper limit on the reduced frequency KS, namely 
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3 

2 

h 

3 
a 

1 

0 

- <'* -- * ---- 
-..- - '.. -- . ... - 

I 1 
0.5 1.0 1.5 2.0 5 

Ks 

FIGURE 3. The dependence of the acoustic attenuation A d B  on the reduced frequency KS, for 
fixed convection Mach number M, = 0.01 and 0 = 0"; 
u = 0.1. 

. . . , D = 0.01; - - -, CT = 0.05; ---, 

KS = ( k d )  u/2Mc 5 u/4illc. (4-9) 

In  applications u 5 0.1 , and except for very small vorticity convection Mach numbers 
M,, only moderate values of the reduced frequency are encompassed by the analysis. 

The dependence of the dissipation on the reduced frequency is conveniently 
measured on a conventional logarithmic scale by 

A = - 10 x log~fi{II.JII~]. (4.10) 

For M, = 0.01, u = 0.1, (4.9) indicates that  the relevant values of KS lie between zero 
and 2.5. Figure 3 shows the variation of the attenuation A over this range of KS, for 
u = 0.01, 0.05, 0.1, and for 8 = 0, M, = 0.01. I n  all cases A vanishes when KS M 2.4, at  
the first zero of the Bessel function J0(~s) where, according to (4.4), y also vanishes. 
Equation (3.11) shows that this is a situation in which the flux Q coincides in value 
with that i t  would have in the absence of vortex shedding, although a # 0. In  other 
words, the potential difference across the slits produced by the shed vorticity vanishes 
as a consequence of its equal and opposite successive interactions with the leading and 
trailing edges of the slits. 

It is, perhaps, surprising that for KS < 0.75 the greatest attenuation occurs a t  the 
smallest open area ratio of u = 0.01. This conclusion, however, is strongly dependent 
on the flow Mach number. Figure 4 illustrates the dependence of A on M ,  Me for 
KS + 0, which is probably the only case of interest in applications. It is evident that, 
although the greatest attenuation is provided by the smallest open area ratio CT = 0.01 
for sufficiently small Mach number, the situation is reversed when the mean flow 
velocity increases. Each of the curves of figure 4 attains a peak value of just over 3 dB, 
a t  M, = +nu, a criterion which may be of interest in design-practice in fixing the 
appropriate value of u. 

At very small Mach numbers equations (4.4), (4.7) indicate that, for fixed KS, the 
attenuation varies linearly with M,, a prediction which is in agreement with experi- 
mental results of Ingard & Ising (1967). Howe ( 1 9 7 9 ~ )  has given a general argu- 
ment which shows that a t  low Mach numbers the net attenuation n, say, due to the 
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0.1 0.2 0.3 0.4 0.5 
, M I  I I I 1 

0 0.02 0.04 0.06 0.08 0.1 

Me 

FIGURE 4. Variation of A with M ,  M ,  (M, 0-2M) for KS = 0 and _.ir normal 
incidence (0 = 0' ) ;  . . ., u = 0.01; ---, u = 0.05; - , L7 = 0.1. 

vortex shedding mechanism discussed in this paper, together with that arising from the 
nonlinear 'jetting ' of fluid in the slits, is given by 

n = A v.ud3x. (4.11) 

In this result w is the vorticity, v the velocity, and u is the acoustic particle velocity 
(which is defined to be the total unsteady component of velocity less the incompressive 
component induced by the vorticity distribution o in accordance with the Biot- 
Savart law, with due account taken of the presence of rigid surfaces). In  the absence 
of mean flow the integrand in (4.1 1 )  is third order in the acoustic particle velocity, and 
the resulting attenuation characterises that associated with nonlinear jetting. When 
U is non-zero, v has a component proportional to U, and the integrand becomes 
quadratic in the acoustic amplitude. With decreasing mean flow velocity a stage is 
ultimately reached at  which these two dissipative components are of comparable 
magnitude. The value of M, at  which this occurs depends, of course, on the acoustic 
amplitude. Some idea of the orders of magnitude involved is obtained by noting that 
nonlinearity is important when u N U,. For a sound pressure level of ,V dB (re 
0-002,ubar), this implies that 

M, 10-((194-J"). (4.12) 

When -4'" N 120 dB, which is typical of the sound pressure level in a gas heat exchanger 
in the presence of the perforated plates, it appears that nonlinear dissipative processes 
will be comparable with the vortex shedding mechanism discussed in this paper only 
for M, 5 In air this corresponds to a convection velocity which does not exceed 
about 4cms-1, and it may be concluded that in practice acoustic nonlinearity is 
probably of no significance. 
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